Problem 7: 2-SAT Problem
Problem Statement: Given a 2-SAT problem with n variables and m clauses, determine if there exists an assignment that satisfies all clauses.
Input
First line contains n and m. Each of the next m lines contain two integers a and b representing a clause (a OR b), where a and b can be negative indicating negation.
Output
Print "YES" if a satisfying assignment exists, otherwise print "NO".
Examples
Input:
2 3
1 2
-1 2
-1 -2
Output:
YES
Solution Explanation
Method 1: Construct the implication graph and use Kosaraju's algorithm to find strongly connected components, then check if any variable and its negation fall in the same component. Method 2: Use the Tarjan's algorithm to identify SCCs inline during DFS traversal, which also allows you to check satisfiability.
Solution in C++
#include
#include
#include
#include
#include
using namespace std;
int var(int x, int n){
return (x > 0) ? x - 1 : n - x - 1;
}
void addEdge(int u, int v, vector> &g){
g[u].push_back(v);
}
int main(){
int n, m;
cin >> n >> m;
vector> g(2*n), gr(2*n);
auto add_clause = [&](int a, int b){
int u = var(-a, n), v = var(b, n);
int u2 = var(-b, n), v2 = var(a, n);
addEdge(u, v, g); addEdge(v, u, gr);
addEdge(u2, v2, g); addEdge(v2, u2, gr);
};
int a, b;
for(int i=0;i> a >> b;
add_clause(a, b);
}
// Kosaraju
vector used(2*n, false);
vector order, comp(2*n);
function dfs1 = [&](int v){
used[v] = true;
for(auto u : g[v]) if(!used[u]) dfs1(u);
order.push_back(v);
};
for(int i=0;i<2*n;i++) if(!used[i]) dfs1(i);
function dfs2 = [&](int v, int cl){
comp[v] = cl;
for(auto u : gr[v]) if(comp[u]==-1) dfs2(u, cl);
};
fill(comp.begin(), comp.end(), -1);
int idx = 0;
for(int i = 2*n-1; i>=0; i--){
int v = order[i];
if(comp[v] == -1) dfs2(v, idx++);
}
for(int i=0;i
Prev
Home
Next