Problem 45: Strongly Connected Components
Problem Statement: Given a directed graph with n nodes and m edges, compute the number of strongly connected components (SCCs) using Kosaraju's algorithm.
Input
The first line contains two integers n and m. The next m lines each contain two integers u and v representing a directed edge from u to v.
Output
Print the number of strongly connected components in the graph.
Examples
Input:
5 5
1 2
2 3
3 1
4 5
5 4
Output:
2
Solution in C++
#include <iostream>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
void dfs1(int u, vector<bool> &visited, stack<int> &st, vector<vector<int>> &adj) {
visited[u] = true;
for (int v : adj[u]) {
if (!visited[v])
dfs1(v, visited, st, adj);
}
st.push(u);
}
void dfs2(int u, vector<bool> &visited, vector<vector<int>> &adjT) {
visited[u] = true;
for (int v : adjT[u]) {
if (!visited[v])
dfs2(v, visited, adjT);
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m; cin >> n >> m;
vector<vector<int>> adj(n+1), adjT(n+1);
for (int i = 0; i < m; i++){
int u, v; cin >> u >> v;
adj[u].push_back(v);
adjT[v].push_back(u);
}
stack<int> st;
vector<bool> visited(n+1, false);
for (int i = 1; i <= n; i++){
if (!visited[i])
dfs1(i, visited, st, adj);
}
fill(visited.begin(), visited.end(), false);
int scc_count = 0;
while(!st.empty()){
int u = st.top(); st.pop();
if(!visited[u]){
dfs2(u, visited, adjT);
scc_count++;
}
}
cout << scc_count << "\n";
return 0;
}