Problem 43: Segment Tree Range Sum
Problem Statement: Implement a segment tree to support point updates and range sum queries. Given an initial array and a sequence of queries, update elements or answer sum queries on subarrays.
Input
The first line contains two integers n and q. The second line contains n space-separated integers. Each of the next q lines contains a query in one of the following formats: 1 pos val (update the element at position pos to val) 2 l r (query the sum of the range [l, r]) Note: 1-indexed positions.
Output
For each query of type 2, print the sum of the specified range.
Examples
Input:
5 5
1 2 3 4 5
2 1 3
1 3 10
2 2 5
1 5 1
2 1 5
Output:
6
21
18
Solution in C++
#include <iostream>
#include <vector>
using namespace std;
class SegmentTree {
int n;
vector<long long> tree;
public:
SegmentTree(vector<int>& arr) {
n = arr.size();
tree.resize(4*n);
build(arr, 0, n-1, 0);
}
void build(vector<int>& arr, int l, int r, int idx){
if(l == r){
tree[idx] = arr[l];
return;
}
int mid = (l + r) / 2;
build(arr, l, mid, 2*idx+1);
build(arr, mid+1, r, 2*idx+2);
tree[idx] = tree[2*idx+1] + tree[2*idx+2];
}
void update(int pos, int val, int l, int r, int idx){
if(l == r){
tree[idx] = val;
return;
}
int mid = (l+r)/2;
if(pos <= mid) update(pos, val, l, mid, 2*idx+1);
else update(pos, val, mid+1, r, 2*idx+2);
tree[idx] = tree[2*idx+1] + tree[2*idx+2];
}
long long query(int ql, int qr, int l, int r, int idx){
if(ql > r || qr < l) return 0;
if(ql <= l && r <= qr) return tree[idx];
int mid = (l+r)/2;
return query(ql, qr, l, mid, 2*idx+1) + query(ql, qr, mid+1, r, 2*idx+2);
}
void update(int pos, int val){
update(pos, val, 0, n-1, 0);
}
long long query(int l, int r){
return query(l, r, 0, n-1, 0);
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, q; cin >> n >> q;
vector<int> arr(n);
for(int i=0;i<n;i++) cin >> arr[i];
SegmentTree st(arr);
while(q--){
int type; cin >> type;
if(type == 1){
int pos, val; cin >> pos >> val;
st.update(pos-1, val);
} else {
int l, r; cin >> l >> r;
cout << st.query(l-1, r-1) << "\n";
}
}
return 0;
}