Problem 4: Maximum Flow (Edmonds-Karp)
Problem Statement: Given a flow network, compute the maximum flow from source to sink using the Edmonds-Karp algorithm.
Input
First line contains n and m, number of vertices and edges. Following m lines contain three integers u, v, capacity. Last line contains source and sink vertices.
Output
Print the maximum possible flow from source to sink.
Examples
Input:
4 5\n0 1 100\n0 2 100\n1 2 1\n1 3 100\n2 3 100\n0 3
Output:
200
Solution in C++
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int MAX = 1000;
struct Edge{
int v, capacity, flow, rev;
};
vector<Edge> adj[MAX];
void addEdge(int u, int v, int cap){
Edge a{v, cap, 0, (int)adj[v].size()};
Edge b{u, 0, 0, (int)adj[u].size()};
adj[u].push_back(a);
adj[v].push_back(b);
}
bool bfs(int s, int t, vector<int> &parent, vector<int> &parentEdge){
vector<bool> visited(MAX, false);
queue<int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while(!q.empty()){
int u = q.front(); q.pop();
for(int i=0; i<adj[u].size(); i++){
Edge &e = adj[u][i];
if(!visited[e.v] && e.capacity - e.flow > 0){
q.push(e.v);
parent[e.v] = u;
parentEdge[e.v] = i;
visited[e.v] = true;
if(e.v == t) return true;
}
}
}
return false;
}
int main(){
int n, m;
cin >> n >> m;
for(int i=0;i<m;i++){
int u, v, cap;
cin >> u >> v >> cap;
addEdge(u, v, cap);
}
int s, t;
cin >> s >> t;
int maxFlow = 0;
vector<int> parent(MAX), parentEdge(MAX);
while(bfs(s, t, parent, parentEdge)){
int path_flow = 1e9;
for(int v = t; v != s; v = parent[v]){
int u = parent[v];
path_flow = min(path_flow, adj[u][parentEdge[v]].capacity - adj[u][parentEdge[v]].flow);
}
for(int v = t; v != s; v = parent[v]){
int u = parent[v];
adj[u][parentEdge[v]].flow += path_flow;
int rev = adj[u][parentEdge[v]].rev;
adj[v][rev].flow -= path_flow;
}
maxFlow += path_flow;
}
cout << maxFlow;
return 0;
}