Problem 34: Robot Paths
Problem Statement: Given an n x m grid with obstacles represented by '#' and free cells represented by '.', count the number of ways to reach from the top-left cell (1,1) to the bottom-right cell (n,m) moving only right or down. Output the answer modulo 10^9+7.
Input
The first line contains two integers n and m. Each of the next n lines contains a string of m characters representing the grid.
Output
Print the number of paths modulo 10^9+7.
Examples
Input:
3 3
...
.#.
...
Output:
2
Solution in C++
#include <iostream>
#include <vector>
#include <string>
using namespace std;
const int MOD = 1000000007;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m; cin >> n >> m;
vector<string> grid(n);
for (int i = 0; i < n; i++){
cin >> grid[i];
}
vector<vector<int>> dp(n, vector<int>(m, 0));
if(grid[0][0]=='.') dp[0][0] = 1;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(grid[i][j]=='#') continue;
if(i > 0) dp[i][j] = (dp[i][j] + dp[i-1][j]) % MOD;
if(j > 0) dp[i][j] = (dp[i][j] + dp[i][j-1]) % MOD;
}
}
cout << dp[n-1][m-1] << "\n";
return 0;
}