Problem 25: Road Construction
Problem Statement: A country plans to connect all its cities by constructing roads. Given a weighted undirected graph with n nodes and m edges, compute the minimum total cost required to connect all cities (i.e., find the cost of the minimum spanning tree).
Input
The first line contains two integers n and m. The next m lines each contain three integers u, v, and w representing an edge between u and v with weight w.
Output
Print the total cost of constructing the roads (MST cost).
Examples
Input:
4 5
1 2 1
2 3 2
3 4 3
4 1 4
2 4 1
Output:
4
Solution in C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct Edge {
int u, v, w;
bool operator<(const Edge &other) const {
return w < other.w;
}
};
int findp(int a, vector<int>& parent){
return parent[a] == a ? a : parent[a] = findp(parent[a], parent);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m; cin >> n >> m;
vector<Edge> edges(m);
for (int i = 0; i < m; i++){
cin >> edges[i].u >> edges[i].v >> edges[i].w;
}
sort(edges.begin(), edges.end());
vector<int> parent(n+1);
for(int i=1; i<=n; i++) parent[i]=i;
long long cost = 0;
for(auto &e : edges){
int pu = findp(e.u, parent);
int pv = findp(e.v, parent);
if(pu != pv){
cost += e.w;
parent[pu] = pv;
}
}
cout << cost << "\n";
return 0;
}