Problem 17: Hungarian Algorithm for Assignment Problem
Problem Statement: Given a cost matrix for n workers and n tasks, compute the minimum cost assignment using the Hungarian algorithm.
Input
First line contains n. The following n lines each contain n integers representing the cost matrix.
Output
Print the minimum cost assignment.
Examples
Input:
3\n9 2 7\n6 4 3\n5 8 1
Output:
10
Solution in C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main(){
int n; cin >> n;
vector<vector<int>> cost(n, vector<int>(n));
for(int i=0; i<n; i++){
for(int j=0;j<n;j++)
cin >> cost[i][j];
}
vector<int> u(n+1), v(n+1), p(n+1), way(n+1);
for(int i=1;i<=n;i++){
p[0] = i;
int j0 = 0;
vector<int> minv(n+1, 1e9);
vector<char> used(n+1, false);
do{
used[j0] = true;
int i0 = p[j0], delta = 1e9, j1 = 0;
for (int j=1;j<=n;j++){
if(!used[j]){
int cur = cost[i0-1][j-1] - u[i0] - v[j];
if(cur < minv[j]) { minv[j] = cur; way[j] = j0; }
if(minv[j] < delta) { delta = minv[j]; j1 = j; }
}
}
for(int j=0;j<=n;j++){
if(used[j]) { u[p[j]] += delta; v[j] -= delta; } else { minv[j] -= delta; }
}
j0 = j1;
} while(p[j0]!=0);
do{
int j1 = way[j0];
p[j0] = p[j1];
j0 = j1;
} while(j0);
}
cout << -v[0];
return 0;
}